Search results for "Physical measurements"

showing 5 items of 5 documents

Demonstration of the event identification capabilities of the NEXT-White detector

2019

[EN] In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat ± 0.3 sys% for a background acceptance of 20.6 ± …

Nuclear and High Energy PhysicsPhysical measurementsPhysics - Instrumentation and DetectorsMonte Carlo methodExtrapolationFísica -- MesuramentsFOS: Physical sciences7. Clean energy01 natural sciencesAtomicMathematical SciencesHigh Energy Physics - ExperimentNuclear physicsTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)Particle and Plasma PhysicsDouble beta decay0103 physical sciencesDark Matter and Double Beta Decay (experiments)Calibrationlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclearCalibratge010306 general physicsNuclear ExperimentMathematical PhysicsPhysicsQuantum Physics010308 nuclear & particles physicsDetectorMolecularDetectorsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsCalibrationPhysical Scienceslcsh:QC770-798High Energy Physics::ExperimentSensitivity (electronics)Event (particle physics)Energy (signal processing)
researchProduct

Radiogenic backgrounds in the NEXT double beta decay experiment

2019

[EN] Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEX…

Nuclear and High Energy PhysicsPhysical measurementsPhysics - Instrumentation and DetectorsDark Matter and Double Beta DecayDark matterFísica -- Mesuramentschemistry.chemical_elementFOS: Physical sciencesRadon7. Clean energy01 natural sciencesAtomicMathematical SciencesHigh Energy Physics - ExperimentNuclear physicsTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonParticle and Plasma PhysicsDouble beta decayDark matter and double beta decay (experiments)0103 physical sciencesDark Matter and Double Beta Decay (experiments)Dark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear010306 general physicsDouble Beta DecayNatural radioactivityMathematical PhysicsPhysicsQuantum PhysicsRadiogenic nuclide010308 nuclear & particles physicsDetectorMolecularDetectorsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicschemistryPhysical Scienceslcsh:QC770-798Event (particle physics)
researchProduct

Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

2013

NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and "blob" regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent e…

PhotomultiplierMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsPhysical measurementsParticle tracking detectors (Gaseous detectors)Time projection chambersPattern recognition SystemsFísica -- Mesuramentschemistry.chemical_elementFOS: Physical sciencesTracking (particle physics)01 natural sciences7. Clean energyTECNOLOGIA ELECTRONICAXenonSilicon photomultiplierOpticsCluster analysisDouble beta decayPattern recognition0103 physical sciencesCalibrationReconeixement de formes (Informàtica)Calibratge010306 general physicsInstrumentationImage resolutionMathematical PhysicsDetectors de radiacióPhysicsCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryDetectorCluster findingFísicaInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorsAnàlisi de conglomeratschemistryNuclear countersCalibrationbusiness
researchProduct

Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe

2019

Excellent energy resolution is one of the primary advantages of electroluminescent high pressure xenon TPCs, and searches for rare physics events such as neutrinoless double-beta decay ($\beta\beta0\nu$) require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for $\beta\beta0\nu$ searches.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysical measurementsPhysics::Instrumentation and DetectorsDark Matter and Double Beta DecayFísica -- Mesuramentschemistry.chemical_elementBioengineeringAtomic01 natural sciencesMathematical SciencesNuclear physicsParticle and Plasma PhysicsXenonAffordable and Clean Energy0103 physical sciencesDark Matter and Double Beta Decay (experiments)CalibrationNuclearlcsh:Nuclear and particle physics. Atomic energy. RadioactivityCalibratge010306 general physicsMathematical PhysicsPhysicsQuantum Physics010308 nuclear & particles physicsDetectorResolution (electron density)MolecularDetectorsNuclear & Particles PhysicsFull width at half maximumchemistryBeta (plasma physics)Physical SciencesCalibrationlcsh:QC770-798High Energy Physics::ExperimentNeutrinoEnergy (signal processing)
researchProduct

Novel leaf-level measurements of chlorophyll fluorescence for photosynthetic efficiency

2015

Solar induced chlorophyll fluorescence (SIF) from vegetation can now be obtained from satellites as well as ground-based field studies, at select wavelengths associated with atmospheric features. At the leaf level, full spectrum (650–800 nm) chlorophyll emissions (ChlF) can be measured using specialized instrumentation to support interpretation of these SIF observations. We found that ChlF spectra differ for leaf bottoms versus upper leaf surfaces, potentially affecting within-canopy radiative scattering. Our ChlF measurements for leaves of eight tree species (n≥125) obtained during fall 2013 senescence at the Duke Forest in North Carolina, USA and the 2014 growing season (n=72) at the USDA…

Fluorescence Geophysical measurements Indexes Reflectivity Remote sensing Vegetation Vegetation mappingGrowing seasonVegetationPhotosynthetic efficiencyPhotochemical Reflectance Indexchemistry.chemical_compoundHorticultureGEO/10 - GEOFISICA DELLA TERRA SOLIDAchemistryChlorophyllRadiative transferEnvironmental scienceTree speciesChlorophyll fluorescenceRemote sensing
researchProduct